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Concurrent grain growth corrections during 
creep of fine-grained materials 

R. W. LOGAN 
Lawrence Livermore National Laboratory, Livermore, California 94550, USA 

This investigation demonstrates the need to correct for concurrent grain growth in low- 
strain-rate studies of superplastic materials. It examines the validity of two common 
equations for expressing the grain-growth kinetics and applies these equations to low- 
strain-rate work in the Zn-22 wt % AI alloy. After the correction was made, the stress 
exponentn changed from n ~4.1 to n ~3.4.  

1, I n t r o d u c t i o n  
The high-temperature mechanical behaviour of 
many fine-grained materials often gives a sigmoidal 
log stress against log strain rate curve (Fig. 1). At 
high strain rates, climb- or glide-controlled creep is 
the rate controlling mechanism in coarse-grained 
and fine-grained materials [1]. At intermediate 
strain rates, materials having very fine grains 
(< 10/~m) often exhibit a much higher dependence 
of stress on strain rate, which results in super- 
plastic behaviour [2, 3]. At still lower strain rates, 
a region of lower dependence of stress on strain 
rate is often observed. 

Some time ago, Rai and Grant [4] realized that 
the behaviour at low strain rates may result from 
an artificial increase in stress caused by concurrent 
grain growth. The effect becomes more pro- 
nounced as the strain rate decreases and testing 
time to a fixed strain increases. Rai and Grant first 
used this reasoning to show that the true behaviour 
at low strain rates in their A1-Cu eutectic alloy 
was identical to that observed in the intermediate 
or superplastic range. 

More recently, Arieli and Mukherjee [5] used 
the above argument to claim that the sigmoidal 
stress curve reported by Mohamed et al. [6-8]  in 
superplastic Zn-A1 eutectoid did not reflect the 
true behaviour of the alloy at constant grain size 
but instead was an artifact produced by con- 
current grain growth. This claim sparked consider- 
able controversy with regard to both the behaviour 
of  Zn-22  wt % A1 and the role of concurrent grain 
growth in general [9-12] .  

The present investigation has two objectives: 
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first, to analyse the procedures for correcting con- 
current grain growth used by Arieli et al. [5, 12] 
and Grivas et al. [11] and, second, to illustrate 
clearly that although concurrent grain growth was 
significant in the work of Mohamed et al. [6 -8] ,  a 
true sigmoidal shape remained even after correction 
was made. 

2. Analysis 
The high-temperature behaviour of most metals, 
regardless of the specific deformation mechanism, 
can usually be characterized by the well-known 
relation: 

dkT _ A i  exp . (1) 
OoOb 

The values of the exponent of Burger's vector/ 
grain size (Pi), the exponent of  stress/shear modu- 
lus (ni), the Arrhenius activiation energy (Qi), and 
the dimensionless constant (Ai), depend on the 
rate-controlling mechanism. Specifically, in the 
superp!astic "Region II" for Zn-22  wt %A1, it is 
generally agreed that n = 2, p = 2, and Q = Qgb 
(the activation energy for grain boundary dif- 
fusion). Mohamed etal. [7, 8] reported a Region I 
at lower strain rates having n ~ 4.1. It is easily 
seen from Equation 1 that an increase in grain size 
d at constant strain rate results in an increased 
stress, giving rise to an artificially high n value 
in the low-strain-rate Region I. 

Arieli and Mukherjee [5, 12] claimed that the 
n = 4.1 Region I of Mohamed et al. was actually 
part of Region II having n ~ 2.25. They used an 
expression of the form 
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Figure I Plot o f  log stress against log strain rate. 

d = do + k t  e (2) 

to express grain size d(/.tm) as a function of initial 
grain size do and testing time t (see). From the 
plot of  d against t supplied by Grivas et  al. (Fig. 2, 
[11 ]), the present author determined that c ~-- 0.21 
and k " 0 . 1 6 4  when Equation 2 is used. Taking 
any two points on the stress against strain-rate 
plot, a corrected n value may be calculated as 
follows: 

In ( i2 / i l  ) (3) 
napparent  --  In (0"2/01) '  

where d and o are experimental strain rate and 
experimental stress. To correct for concurrent 
grain growth, (d*) is then: 

e = d (4) 

where do is the initial grain size and d i is the grain 
size at time ti when strain rate ei was measured. 
The corrected n is given by 

In [ (~2/e l )  (62 /d l  )P ] 
FI = 

In (o2/ol)  

ln (~2/el )  "~- In (d 2 /d l )  p] 
: "~  7 7777 j 

= n ~ p v  1 + p  [ ~ n ~ - ~ ]  " ( 5 )  

Substituting d = do + k t  c for dl and d2 yields: 

n = napp 1 + l n ( d z ~  ] "  (6) 

where p is the grain-size exponent, ga and ~2 are 
the two strain rates under consideration, and t~ 
and t2 are the corresponding testing times. In the 
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following analysis, ( t l / t 2 )  has been substituted 
for (e2/dl), which is valid except when considering 
transient creep. 

Grivas et  al. [ 11 ] argued that a better expression 
for concurrent grain growth is of  the form 

t i 
d = k t  c (7) 

so that do is ignored. From Fig. 2 of  [11], the 
present author obtained c' = 0.065 in Equation 7, 
which differs slightly from the value c ' =  0.04 
reported in [6]. Using Equation 7 and the assump- 
tion that (e2/el)  = ( t l  It2),  

n = nap p 1 + p [ l n ( t 2 / t l ) C  
in ( t l / t 2 )  (8) 

o r  
n = napp(1- -pc ' ) .  (9) 

In Equation 6, the correction to nap p is a 
function of the magnitude of  tl and t2, the ratio 
( t 2 / t l ) ,  the grain-size exponent (p), and the 
constants in Equation 2. In Equation 9, the 
correction depends only on p and the constant e' 
in Equation 7. 

Using Equations 6 and 8, a plot of  n against 
time was made using ta and t2 as appropriate to 
e = 0.10 at different strain rates in Region I (see 
Fig. 2). The ordinate is given as 4 .1 (n /napp)  , which 
gives a corrected n value for the work of  Mohamed 



et al. [7, 8]. Depending on the value o f p  (values 
of  2 or 3 were considered reasonable), the corrected 
n takes an average value of 3.3 to 3.6 for the 
values of  t >  103 appropriate for Region I. At 
these values of t, essentially the same corrected n 
results whether grain growth is corrected using 
Equation 6 or Equation 9. 

This value of n--~ 3.4 agrees well with values 
found in the other high-n studies [9, 13]. It is 
much different from the value ofn -~ 2.25 proposed 
by Arieli and Mukherjee for the same data. The 
present author believes that the value of n = 2.25 
as proposed in [5] is based on a data analysis that 
greatly overestimates the amount of concurrent 
grain growth in the work of Mohamed and 
Langdon [7]. 

The simplicity of Equation 9 is rather surprising, 
and indeed disturbing if considered carefully. The 
implication is that the correction to nap p is not a 
function of strain rate or testing time. Thus, 
according to Equation 9, although n = 4.1 in 
Region I is corrected to n ~3 .6 ,  n = 2.25 in 
Region II must also be corrected to n--~2.0. 
Indeed, the same correction must be made in 
Region III where testing time is but a few seconds. 
Previous works [13, 14] showed that significant 
grain growth does not occur in the higher-strain- 
rate Regions II and III, even though strains may be 
larger than those obtained in Region I. Therefore, 
although the amount of concurrent grain growth 
may be influenced by strain [15], it would appear 
that the most significant variable is the time during 
which plastic deformation occurred. 

The obvious flaw in Equation 9 stems from the 
basic assumption of Equation 7 that do is negligible 
in the grain growth expression. As previously 
pointed out [12], do is negligible during recrystal- 
Iization/grain growth experiments but not during 
studies where the final d is less than two or three 
times do. The net effect is, in general, that 
Equations 7 and 9 are not valid when correcting 
for concurrent grain growth. Equation 9 works 
reasonably well at long testing times, especially if 
the data for Equation 7 are obtained at similar 
times. However, Equation 9 continues to predict 
the same correction to n at higher strain rates 
(Region II and Region III) where negligible grain 
growth occurs. 

3. Conclusions 
In most fine-grained materials, a correction for 
concurrent grain growth during high-temperature 

deformation is important. In making such cor- 
rections, the relation d = k t  e is only valid if the 
region of interest is such that d >> do. However, 
if this condition exists, the correction is a very 
simple one (Equation 9). Otherwise, a variant of 
Equation 2 is preferred to express the grain 
growth kinetics. 

The Z n - 2 2 w t  %A1 work of Mohamed et al. 

[6-8]  represents a special case; either method of 
correction lowers n from 4.1 to about 3.4 in the 
region of interest, However, this n value is still 
much higher than that proposed by Arieli 
et al. [5]. 

A more precise method for correcting concur- 
rent grain growth is to examine the grain size at 
the strain at which the mechanical data are taken; 
this method should be used to obtain both p and 
n [13]. This concept of measuring the grain size 
at various stages of plastic deformation was used 
in another recent study [15]. However, although 
the amount of grain growth was not large in that 
work, a precise value for the grain size exponent p 
was not determined. Although such an omission 
certainly does not weaken the case that Livesey 
and Ridley [15] presented for the high-n Region I, 
it does leave their exact numerical values open to 
some question since the effect of grain growth, 
though small and perhaps even negligible, was not 
considered. 
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